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Abstract: The new constellation of synthetic aperture radar (SAR) satellite, Sentinel-1, provides images
at a high spatial resolution (up to 10 m) typical of radar sensors, but also at high time resolutions
(6–12 revisit days), representing a major advance for the development of operational soil moisture
mapping at a plot scale. Our objective was to develop and test an operational approach to assimilate
Sentinel 1 observations in a land surface model, and to demonstrate the potential of the use of the
new satellite sensors in soil moisture predictions in a grass field. However, for soil moisture retrievals
from Sentinel 1 observations in grasslands, there is still the need to identify robust and parsimonious
solutions, accounting for the effects of vegetation attenuation and their seasonal variability. In a
grass experimental site in Sardinia, where field measurements of soil moisture were available for
the 2016–2018 period, three common retrieval methods have been compared to estimate soil mois-
ture from Sentinel 1 data, with increasing complexity and physical interpretation of the processes:
the empirical change detection method, the semi-empirical Dubois model, and the physically-based
Fung model. In operational approaches for soil moisture mapping from remote sensing, the parame-
terization simplification of soil moisture retrieval techniques is encouraged, looking for parameter
estimates without a priori information. We have proposed a simplified approach for estimating a key
parameter of retrieval methods, the surface roughness, from the normalized difference vegetation
index (NDVI) derived by simultaneous Sentinel 2 optical observations. Soil moisture was estimated
better using the proposed approach and the Dubois model than by using the other methods, which
accounted vegetation effects through the common water cloud model. Furthermore, we successfully
merged radar-based soil moisture observations and a land surface model, through a data assimilation
approach based on the Ensemble Kalman filter, providing robust predictions of soil moisture.

Keywords: soil moisture; radar; Sentinel; grass; roughness; NDVI; data assimilation; Ensemble
Kalman filter

1. Introduction

The state of soil moisture is a key variable of land surface processes controlling surface
water and energy balances [1–4]. Nowadays, remote sensors provide an unprecedented
opportunity to monitor soil moisture at a high time frequency over large spatial scales [5–8].
A variety of infrared and microwave (both active and passive) sensors operating from
laboratory, aircraft, and satellite platforms have been tested for soil moisture retrieval,
and the potentials and limitations of each of these remote sensing techniques have been
well documented [7,9–11]. The main advantage of the radar, an active sensor, is that it
provides observations at much higher spatial resolutions (tens of meters) than those (tens
of kilometers) of passive satellite sensors (e.g., radiometers or scatterometers) [12–14].
The high spatial resolution of radar is a key qualification for soil moisture mapping of
small hydrologic basins, such as Mediterranean basins that are typically characterized by
a rugged topography and a high spatial variability of physiographic properties [15,16]
Furthermore, in Mediterranean basins under water-limited conditions, soil moisture ranges
frequently moving to extreme opposite moisture conditions (from dry to wet or vice-versa)
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over a short time (e.g., daily, weekly) [17–19], highlighting the need for soil moisture
mapping at a high frequency.

In this sense, the new constellation of synthetic aperture radar (SAR) satellites,
Sentinel-1 A (from April 2014) and Sentinel-1B (from April 2016), provides images at
high spatial resolution (up to 10 m) typical of radar sensors, but also at high time resolu-
tions (6–12 revisit days), representing a major advance for the development of operational
soil moisture mapping at plot scale [20–22].

Several methods have been developed to estimate soil moisture over bare soil surfaces
from SAR observations, varying from physical models (e.g., the Integral Equation Model
(IEM; Fung et al. [23]), the Advanced Integral Equation Model (AIEM; [24]), and the
Integral Equation Model for Multiple Scattering [25], to empirical and semi-empirical
models [24,26–28]. Recent efforts have estimated soil moisture in bare soil plots from
Sentinel 1 data using both physical models [29–32] and empirical approaches [33–36]. The
unprecedented high frequency of the Sentinel 1 satellite passes has also encouraged the
use of simple change detection techniques [5,37], where soil moisture is estimated linearly
scaling observed radar backscatter.

Grass species are common on all continents except Antarctica, and grasslands cover
approximately 26% of terrestrial areas globally [38,39]. To estimate soil moisture from
SAR images in grasslands, the main difficulties are that soil moisture, surface roughness,
and vegetation cover all have an important and nearly equal effect on radar backscat-
ter [31,40–45], and grass cover is not constant over time but changes seasonally [46,47].
Empirical relationships have been proposed to account for vegetation effects on a backscat-
ter SAR signal [43]), relating the SAR signal with vegetation indexes, such as the normalized
difference vegetation index (NDVI), which can be estimated from concomitant optical data.
However, the most common approach is based on the water cloud model (WCM) [44,48–50],
where the vegetation contribution is computed from vegetation parameters (e.g., the NDVI),
and vegetation effects are subtracted to radar backscatter, which is then related to bare soil
water contents.

Most previous efforts [43,45,51] have investigated the effects of vegetation on SAR
signals using an instantaneous satellite image and relating the SAR signal to the spatial
variability of vegetation, somehow accounting also for the effects of the spatial variability
of other physiographic properties on soil moisture [3,52]. Nowadays the optical Sentinel 2
data [6] provide observations of vegetation indices at high spatial (10 m) and temporal
(5 days) resolutions, similar to Sentinel 1 observations. Numerous efforts have combined
Sentinel 1 and Sentinel 2 data for soil moisture estimation using the WCM [35,50,51], the
change detection method [5,53], a neural network technique [29], and a machine learning
regression algorithm [54]. The use of almost simultaneous observations of Sentinel 1 and
Sentinel 2 provides an opportunity to investigate the effects of vegetation on SAR signals
for individual locations at a plot-scale over long time periods without the effects of the
variability of other physiographic properties.

The parameterization simplification of soil moisture retrieval techniques is encouraged
in operational approaches for soil moisture mapping from remote sensors, looking for
parameter estimates without a priori information [55]. Radar surface roughness is one of
the key parameters of most common models (e.g., Fung et al. [23] and Dubois et al. [27]
models. Surface roughness is typically assumed to be constant over a relatively short
time period [44,56], but when long periods are considered, this assumption can hardly be
preserved. Interestingly, Capodici et al. [52] estimated a linear increase of surface roughness
with NDVI for a maize field relative to a short growing season (April–August 2006). With
the objective of simplifying parameterization, we looked for a surface roughness (NDVI
relationship effective over all seasons) to be used with common retrieval models such as
the Fung et al. [23] and Dubois et al. [27] models, which were able to account for grass
cover effects on radar signals. For comparison, the common WCM is also used to account
for vegetation contributions.
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Data assimilation techniques are being developed to guide land surface models (LSM)
with periodic observations of certain state variables, such as surface soil moisture, ob-
served indirectly by remote sensing platforms [57–66]. Montaldo and Albertson [67] and
Montaldo et al. [68] developed a procedure for soil moisture assimilation at the plot scale
using the Ensemble Kalman filter (EnKF; Refs. [66,69,70] in a force-restore based land
surface model (LSM). However, Montaldo et al. [68] used observations from frequency
domain reflectometer (FDR) probes installed in the field as a proxy for remote sensing
observations of soil moisture due to the absence of radar long data sets at high spatial and
temporal resolutions at that time. Nowadays, the unprecedented high temporal frequency
of Sentinel 1 observations provides the opportunity to finally achieve operational proce-
dures for soil moisture assimilation at fine spatial scales. The first efforts by Pan et al. [8]
and Zhuo et al. [56] assimilated Sentinel 1 -derived soil moisture in the WOFOST model
using the EnKF. The soil moisture assimilation system was applied to estimate winter
yield and for a short growing season only and used simple approaches for soil moisture
retrieval from Sentinel 1 observations (change detection method in Pan et al. [8] and an
empirical relationship between radar backscattering and soil moisture in Zhuo et al. [56]).
To develop an operational data assimilation approach for soil moisture predictions using
the attractive Sentinel 1 observations there is still the need to identify robust and parsi-
monious solutions for soil moisture retrievals in vegetated fields. Starting from Montaldo
et al. [68], we assimilated Sentinel 1-derived soil moisture estimates in the LSM, using an
EnKF-based assimilation approach for soil moisture predictions, and accounting for the
effects of vegetation on SAR signals.

The experimental grass field of Orroli in Sardinia [47,71,72] provides an interesting
case study for testing an operative approach for soil moisture estimation due to its strong
interannual and seasonal rain variability [73] affecting soil moisture dynamics. The field site
was monitored for a three-year period (2016–2018), during which Sentinel 1 and Sentinel 2
observations and soil moisture measurements were available. In this way, the following
objectives were addressed:

- To test the potential of Sentinel 1 for soil moisture estimation in a grass field character-
ized by typical Mediterranean water-limited conditions;

- To compare and revise some common retrieval models for soil moisture estimation
from Sentinel 1 data, proposing a simplified and robust solution to account for veg-
etation attenuation effects on radar backscattering using simultaneous Sentinel 2
optical data;

- To develop and test an operational approach to assimilate Sentinel 1 observations in a
land surface model, to demonstrate the potential of the use of the new satellite sensors
in soil moisture predictions in a grass field.

2. Materials and Methods

The proposed assimilation approach includes radar-based soil moisture observations,
the land surface model, and the EnKF. We compared several methods for soil moisture
retrieval from radar data, and, to account for the contribution of vegetation on radar, we
evaluated an existing method, the WCM, and proposed a simplified approach, testing them
with field data of the Sardinian grass site. In the following sections, the case study and field
campaign, the satellite data, methods for soil moisture retrieval from radar information,
and the assimilation approach are described.

2.1. Sardinian Case Study

The experimental grass site was in Orroli, Italy (39◦41′12.57” N, 9◦16′30.34” E, 560 m
a. s. l.), on the island of Sardinia [47] The climate at the site is maritime Mediterranean,
with a mean annual precipitation (1922–2018) of 612 mm and mean historical monthly
precipitation ranging from 11 mm in July to 102 mm in December. The mean annual
air temperature is 14.6 ◦C, and the mean historical monthly temperature ranges from a
minimum of 7.1 ◦C in January to a maximum of 23.7 ◦C in July.
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Grasses (Bellium bellidioides, Bellis perennis; Avena fatua, Hordeum murinum) reach their
maximum growth (~25 cm) in spring. Grass then dies yellowing at the end of summer (the
driest season), as is common for Mediterranean species [46].

The land gently sloped approximately 4.6◦; the soil, which was 17 cm in deep (coinci-
dent with the root zone depth) above a fractured basalt, was a silt loam with mean bulk
density of 1.48 g/cm3 and a porosity of 53% [17]. The grass root density was 0.5–1.0 kg/m3.

Five frequency domain reflectometer probes (FDR, Campbell Scientific Model CS-616)
were inserted in the grass field to monitor moisture (θ) in the thin soil layer from May
2003 to August 2018 (with several gaps due to instrument failure). FDR calibration
(θ = 2.456− 7.135τ + 6.701τ2 − 1.884τ3 where τ is the output period in milliseconds) was
performed using 15 periodic gravimetric water content samples taken over a wide range
of θ (0.08–0.52 m3 m−3) near the probes. Micrometeorological observations from 2003
onwards are also available for the Orroli site [17,47].

Soil moisture was also monitored in another grass field (39◦41′15.8” N, 9◦13′18.5” E,
480 m a. s. l.) close to the Orroli site (5 km away), using portable soil moisture probes
(ThetaProbe ML3) opportunely tested with gravimetric measurements, and sampling eight
points in an area of approximately 60 m × 100 m in size. Soil moisture was monitored
during eight days of 2017 (day of the year, DOY, 40, 76, 83, 103, 125, 135, 151,173) and five
days of 2018 (DOY 157, 166, 190, 204, 211). The soil was a silt loam with mean bulk density
of 1.38 g/cm3, and a porosity of 45%. This secondary case study provided the opportunity
to further validate the proposed method for soil moisture estimation from Sentinel 1 data.

2.2. Satellite Data

Two types of remote sensors belonging to the Sentinel satellite constellation were
examined and coupled. The first was the SAR mounted on Sentinel 1 to detect the dielectric
constant of the surface soil, which is related to soil moisture, and the second was the
multispectral optical radiometer mounted on Sentinel 2, to detect vegetation characteristics.

The Sentinel 1 radar data were derived from S1A and S1B satellites, which carry
a C-band synthetic-aperture radar instrument, and the level-1 Ground Range Detected
GRD was used. The images were calibrated, corrected from the noise with a Lee filter
7 × 7, and resampled at a 30 m spatial resolution. The S1A images were available from
January 2016, and we selected the VV polarization, since VV polarization is higher sensitive
to soil moisture [45,74] and less sensitive to vegetation compared to VH polarization [75].
From September 2016, the S1B satellite images were also available, so that the double
information coming from the two satellites (S1A and S1B) was available every six days
approximately, but in two different acquisition modes, descending (at ~05:28 AM) and
ascending (at ~05:28 PM) respectively. In total, Sentinel 1 data were collected for 153 days
from January 2016 to August 2018, and the corresponding σ0

vv backscattering coefficients
from S1A and S1b images were acquired.

The images of the Sentinel 2 radiometer were acquired at the L1C level, and afterwards
they were atmospherically corrected with Sen2Cor tool of the Sentinel Application platform
(SNAP), or directly at the L2A level (already corrected). The optical data were used to
estimate the NDVI at high spatial (10 m) and temporal (≈5 days) resolutions. Optical data
were resampled at a 30 m spatial resolution as radar images, and the NDVI was available
for 74 days from January 2016 to August 2018. Due to the lack of NDVI data from Sentinel 2
during a few months in 2016 and 2017, we also acquired eight operational Land Imager
(OLI)—Landsat 8 data at a 30 m spatial resolution to increase the NDVI dataset.

To test the data assimilation approach, Sentinel 1 and Sentinel 2 data from August 2018
to July 2020 were also acquired.

2.3. Methods for Soil Moisture Retrieval from Sentinel 1 Data

To estimate soil moisture from Sentinel 1 data, three common methods have been
used, with increasing complexity and physical interpretation of the processes: the em-
pirical change detection method [5], the semi-empirical Dubois et al. [31] method, and
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the physically-based Fung et al. [23] method. The change detection method estimates
soil moisture from σ0

vv directly, while the Dubois et al. [27] and Fung et al. [23] methods
compute the ε dielectric constant from σ0

vv, so that a further step is needed to estimate
θ from ε. To relate θ with ε through the Γ operator, we used the common Topp et al. [76]
equation [36,41,77]:

θ = Γ(ε) =
(
−530 + 292ε− 5.5ε2 + 0.043ε3

)
10−4 (1)

2.3.1. The Revised Change Detection Method

The change detection method estimates θ linearly scaling the observed radar backscat-
ter between the minimum (σ0

dry) and maximum (σ0
wet) backscatter values observed over

the investigated period; these are considered to be equivalent to the dry and wet soil
references, respectively [5]. The method’s assumption is that factors influencing the radar
backscatter signal vary over time, with vegetation and surface roughness affecting long-
term changes in σ0

vv, whereas short-term variations of backscattering are associated with
moisture variations. The high temporal resolution of Sentinel-1 SAR time series is a
precondition for the use of the method. We revised the Urban et al. [5] method:

θ = θmin +
σ0 − σ0

dry

σ0
wet − σ0

dry
(θs − θmin) (2)

where we rescaled θ between a minimum (θmin) and a maximum (the saturated soil moisture
condition, θs) amount of soil moisture, which were characteristics of the soil type, and
could be determined from the observed soil moisture; σ0

dry and σ0
wet were estimated

from the lowest and the highest backscatter values observed over the investigated period,
respectively [5]. Hereafter, we indicated with “CD” the revised change detection method.

2.3.2. The Semi-Empirical Model of Dubois et al. 1995

The Dubois et al. [27] model accounts for co-polarized backscattering only and relates
the backscattering signal with the dielectric constant of the ground. The model is restricted
to co-polarization channels (VV or HH). Here, only the VV relation was used:

σ0
vv = 10−2.35 cos3 β

sin3 β
100.046ε tan β(kσ sin β)1.1λ0.7 (3)

where λ is the wavelength, k is the wave number equal to 2π/λ, σ is the surface roughness,
and β is the local incident angle related to radar beam angle and the latitude, exposition
and slope of the site. The inversion of (3) allowed us to estimate the dielectric constant from
σ0

vv radar observations, knowing surface roughness and the specific radar configuration
parameters (wavelength and incidence angle). While radar configuration parameters were
known, σ was undetermined.

Commonly, prescribed or field estimated values of σ can be used as a constant over
time to estimate ε with (3). When simultaneous soil moisture field measurements and radar
observations are available, (3) can be used in inverse mode for estimating σ. Indeed, we
derived a “measured” ε dielectric constant inverting (1) using the θ measurements at the
field, then using σ0

vv from ε we estimated σ by inverting (3) at each satellite pass. In this
way, the variability of σ with grass growth was investigated. We hereafter refer to the
Dubois et al. [27] model as “DU”.

2.3.3. The Physical Model of Fung et al., 1992

The Fung et al. [23] model is a radioactive transfer model that estimates the backscatter-
ing coefficient for a random roughness surface, knowing the antenna radar characteristics
(the wavelength, the frequency, the polarization and the angle of view) and the properties of
the investigated surface (ε, the µ electromagnetic permeability, σ, the CL correlation length,
and the inclination of a specific point with respect their vertical-azimuth). Considering
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smooth to moderately rough natural surfaces (with kσ < 3) the backscattering coefficient
was estimated as:

σ0
vv =

k2

2
exp

(
−2k2

zσ2
) ∞

∑
n=1

σ2n|In
vv|

Wn(−2kx, 0)
n!

(4)

where kz is equal to k cos β, and kx is equal to k sin β. The term In
vv is given:

In
vv =

(
2kz)

n fvv exp(−k2
zσ2
)
+

kz
n[Fvv(−kx, 0) + Fvv(kx, 0)]

2
(5)

where:
fVV =

2Rv

cos β
(6)

Fvv(−kx, 0) + Fvv(kx, 0) =
2 sin β(1 + Rv)

2

cos β

[(
1− 1

ε

)
+

µε− sin2 β− ε cos2 β

ε2 cos2 β

]
(7)

where Rv is the surface reflection coefficient given by the Fresnel reflection equation as
a function of the local incident angle and the dielectric constant based on the polariza-
tion sensor, and Wn(−2kx, 0) is the Fourier transform of the nth power of the surface
autocorrelation function, which is related to CL by an exponential distribution.

To estimate ε from σ0
vv observations, Equation (4) (together with (5)–(7)) needs to

be inverted, and two parameters, σ and CL, need to be defined. Usually, prescribed or
field estimated values of σ and CL are used, assuming that they are constant over time.
When field soil moisture observations are available, Equation (4) can be used in inverse
mode to estimate σ and CL for each satellite pass, using simultaneous radar observations.
Indeed, from θ measured in the field, a “measured” ε dielectric constant can be derived
inverting (1), and ε can be used in (4), to obtain σ and CL from σ0

vv observations. However,
since two parameters are unknown, two equations are needed. Sentinel 1 provided two
daily passes (S1A and S1B), so that two σ0

vv were available daily, and two Equation (4)
could be used. Indeed, assuming that the soil moisture measured at the field remained
approximately constant throughout the day, the system of two Equation (4) could be solved
to estimate the two unknown parameters at each satellite pass. We investigated the time
variabilities of σ and CL with grass growth at the field site, relating them to simultaneous
NDVI observations.

The Fung et al. [23] model is from here on referred to as “FU”.

2.3.4. Removal of Grass Cover Contribution from Radar Backscattering

To account for the contribution of vegetation and the attenuation on radar backscatter-
ing we first used the semi-empirical WCM proposed by Attema & Ulaby [48]. In the model,
the total backscattering is the incoherent sum of the contributions of the vegetation (σ◦veg)
and the soil (σ◦soil), and the two way attenuation of the vegetation layer (τ2). For a given
incidence angle, the backscattering is expressed as:

σ0
vv = σ0

veg + τ2σ0
soil (8)

With
σ0

veg = AW1 cos β
(

1− τ2
)

(9)

τ2 = e−2BW2/ cos β (10)
where W1 and W2 are vegetation descriptors, which we assumed to be equal to the NDVI
following Baghdadi et al. [50], and A and B are fitted parameters of the model that depend
on the vegetation descriptors. To apply the WCM with known A and B, we computed σ0

veg

and τ2 from (9) and (10) using Sentinel 2-based observations of the NDVI, and derived
σ0

soil from (8) using σ0
vv from Sentinel 1. Soil moisture was estimated from σ0

soil using the
three soil moisture retrieval models (CD, DU, and FU) assuming model parameters were
constant over time.
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To account for grass cover effects on the radar backscatter signal using FU and DU
models, we proposed another approach in which assumed that the model parameters
changed seasonally with grass cover. Hence, in both FU and DU we investigated the
variability of σ, the surface roughness parameter, with vegetation growth, looking for the
relationship of σ with the NDVI. In the case of FU model, we also looked at relating CL with
the NDVI. Indeed, with the objective of simplifying the parameterization of the retrieval
models we integrated vegetation effects in the roughness parameter, and investigated its
relationship with NDVI. We explored the seasonal variability of σ and CL in the field site
using simultaneous soil moisture field measurements and radar Sentinel 1 observations.
As anticipated in Section 2.3.3, we inverted (4) from θ measurements and simultaneous
σ0

vv observations of S1A and S1B Sentinel, and estimated the σ and CL for each satellite
pass. Because simultaneous NDVI data were available from satellite observations, we
related the estimated σ and CL with the NDVI to obtain the σF (NDVI) and CLF (NDVI)
relationships. In this way, the FU model parameters varied with NDVI, and the σF (NDVI)
and CLF (NDVI) relationships were used in (4) to retrieve soil moisture information.

In the case of the DU model, we estimated σ for each satellite pass inverting (3), by
using θ field measurements and σ0

vv observations. Using σ estimates and simultaneous
NDVI observations, we related the estimated σ with the NDVI to obtain a σD(NDVI)
relationship. In this way, using the DU model, σ varied with the NDVI using the proposed
σD(NDVI) relationship, and σD(NDVI) was used in (3) with simultaneous σ0

vv Sentinel 1
observations to derive the dielectric constant. The soil moisture was estimated from the
dielectric constant using (1).

2.4. Data Assimilation Approach

The data assimilation approach assimilates Sentinel 1 observations in a LSM to predict
soil moisture. It is derived from Montaldo et al. [68] approach, and includes the radar-based
observations, the LSM, and the EnKF. Here, since the methods for soil moisture retrieval
from radar data have been already explained, the last two components and the operational
approach are described.

2.4.1. The Land Surface Model

The land surface model of Montaldo and Albertson [78] and Montaldo et al. [68]
predicts the dynamics of water and energy fluxes at the land surface on a half-hour
time step. The root zone supplies the bare-soil and vegetation with soil moisture for
evapotranspiration and controls the infiltration and runoff mechanisms. The base of the
root zone represents the lower boundary of the LSM. The equations for surface temperature
and the three components (sensible heat flux, ground heat flux, and the net radiation) of
the energy balance are the same as in Noilhan and Planton [79]. In the unsaturated soil, the
Clapp and Hornberger [80] relationships are used to describe the non-linear dependencies
of volumetric soil moisture and hydraulic conductivity on the matric potential. The soil
water balance equation of the root zone is computed by:

dθ

dt
=

1
drz

(I − Et − Ebs − qD) (11)

where drz is the root zone depth, I is the infiltration rate, qD is the rate of drainage out of the
bottom of the root zone, which is estimated using the unit head gradient assumption [78,81]
Ebs is the rate of bare soil evaporation, and Et is the rate of transpiration. As in the original
Noilhan and Planton [79] model, the throughfall rate was modeled through a balance
equation of the intercepted water by the canopy reservoir (its capacity is a function of
the LAI), which produces throughfall when the reservoir is saturated. The infiltration
model is based on the Philip’s infiltration equation. The evapotranspiration components
were estimated using the Penman-Monteith equation ([82], p. 224), with aerodynamic
resistances estimated as a function of wind velocity through the transfer coefficient for water
vapor according to the Monin-Obukhov similarity theory and accounting for atmosphere
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stability [83]. The potential evaporation (PE) was estimated using the Penman equation
([82]). Details are provided in Montaldo and Albertson [78] and Montaldo et al. [17].

2.4.2. The Assimilation Approach Using the EnKF

In the proposed approach, the assimilated state variable is the soil moisture, and the
nonlinear model that describes the evolution of θ is the LSM. We used the same approach
of Montaldo et al. [70] which implemented the EnKF for the same LSM, updating it to
assimilate radar-based observations.

In the Kalman filters, a vector
→
φ of land surface state variables, e.g., soil moisture, was

defined. For a nonlinear model the equation describing the evolution of
→
φ can be written

as (e.g., [63]).
d
→
ϕ

dt
=
→
f
(→

ϕ ,
→
ω
)

(12)

where
→
f is the non-linear land surface model,

→
ω is the vector of errors (e.g., model physics,

parameterization, and/or forcing data) which for the Kalman filter should be taken to be

mean zero and covariance
→
Ω. We address below the fact that the model is easily biased

in the absence of perfect knowledge of certain key parameter values. Observations of the
state variables are available through measurements at time tj

→
δ
(
tj
)
=
→
H
[→

ϕ
(
tj
)]

+
→
ε
(
tj
)

(13)

where
→
ε is the vector of measurement errors, and

→
H is the operator that maps state variables

into measurements. A probabilistic distribution of
→
ε with zero mean and covariance

→
R

is assumed.

In the EnKF [63,66,69,84–86] an ensemble of
→
φl (l = 1, . . . , Ne, with Ne the size of the

ensemble) model predictions is propagated in parallel using (13). Each ensemble member

is updated separately using the
→
δ
(
tj
)

observation and the diagnosed state error covariance
→
P−
(
tj
)

(e.g., Ref. [66], Equation (6b)). The superscript ‘−’ will be used to indicate the
modeled state variable value before the updating, and the superscript ‘+’ for the value after
the updating at time tj. The optimal updating is given by (Reichle et al., 2002)

→
ϕl+ =

→
ϕl− +

→
K
[→

δ −
→
H
( →

ϕl−
)
+
→
εl
]

(14)

where
→
K is the Kalman gain, which depends on

→
P−, and

→
εl is a random realization of the

measurement error (e.g., Refs. [85,86]). The EnKF state estimate of the vector of the land
surface state variables is given by the mean of the ensemble members, φ

+(tj
)
. Details on

the EnKF are provided in [66,69,85].
We included model errors in the EnKF through errors in the model’s initial conditions,

forcing data, and physical parameters [85,87]. We included errors of (1) soil moisture initial
conditions, (2) precipitation (whose uncertainty was expected to have significant impacts
on the distribution of soil moisture, e.g.,Ref. [85]), and (3) three key model parameters:
the saturated hydraulic conductivity (ks), the minimum stomatal resistance (rs,min), and
the limiting soil moisture of grass (θlim). The ensemble of soil moisture initial values was
generated by altering a particular value of soil moisture through the addition of a normally
distributed perturbation with mean zero and SDθ standard deviation. At each time step,
the ensemble of precipitation was generated by multiplying the recorded precipitation
value by a normally distributed random variable. An ensemble of saturated hydraulic
conductivity values (kl

s) was generated as being log10 normally distributed with mean
of log(k̂s) (indicating with k̂s the base (i.e., best guess) value of the kl

s ensemble) and the
standard deviation of SDlogks. An ensemble of minimum stomatal resistance (rl

s,min) was
generated as being normally distributed with mean of r̂s,min and standard deviation of
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SDrsmin. Finally, an ensemble of limiting soil moisture values (θl
lim) was generated as being

normally distributed with mean of θ̂lim and standard deviation of SDθlim.
In this way, an ensemble of θl , which includes model errors, was generated and

evolved in time according to (11). The
→
δ
(
tj
)

observations were obtained including the
→
εl

random error in the ε observations derived from Sentinel 1 according to (14), where the

operator
→
H is the inverse of Γ in (1). When observations from Sentinel 1 are available, the

ensemble of θl (i.e., θl−(tj
)
) is replaced by (e.g., updated to) the ensemble θl+(tj

)
that is

optimally estimated by (15) using the
→
δ
(
tj
)

observations. Note that we considered the
radar observations, which monitor surface soils, as being representative of θ in the (11) soil
water balance equation due to the thinness of the soil in this experimental field; otherwise,
for general cases with deeper soils, the whole Montaldo et al. [68] approach should be used
for assimilating root zone soil moisture from surface soil moisture observations.

From here on, “EnKF” is used to indicate the assimilation approach that includes the
EnKF, and “EnOL” will refer to the ensemble open loop without assimilation. Hence, EnOL
configuration will include the model errors, and the comparison between EnKF and EnOL
will allow to evaluate the performance of the soil moisture assimilation approach.

3. Results

The observed soil moisture at the field generally varied from wet conditions in winter
to dry conditions in late spring and summer during the 2016–18 period (Figure 1a). Spring
and summer 2018 were unusually wet with soil moisture often rising to saturated conditions
and becoming dry only in late July 2018. On the contrary, in spring and summer 2017, soil
moisture was dry earlier than usual, and was lower than 0.2 from mid-March (Figure 1a).
The soil moisture dynamics were strongly related to precipitation during spring and
summer (correlation coefficient of 0.53). When comparing the seasonal precipitations of
the 2016–2018 observed period with those of the longer 2003–2018 period, the spring and
summer of 2018 were outliers of high precipitation, while the spring and summer of 2017
(on average 0.4 mm/day and 0.2 mm/day, respectively) were outliers of low precipitation;
the spring and summer of 2016 (on average 0.9 mm/day and 0.8 mm/day, respectively)
had precipitation values closer to the averages (Figure 2a). While winter rain was close the
average during all the three years, the fall of 2017 was very dry (=1.1 mm/day), close to
the negative outlier (Figure 2a). The other main forcing of θ, the potential evaporation, was
unusually low in the spring and summer of 2018 (on average 3.4 mm/day and 4.6 mm/day,
respectively), and close to the average in the spring and summer of 2017 (on average
4.0 mm/day and 5.2 mm/day, respectively) (Figure 2b). The seasonal regime of PE was
typically opposite to the seasonal rain regime, with maximum PE in summer, when rain
was at its minimum, and the lowest PE in winter when rainfall was at its highest (Figure 2).

The radar observations somehow captured the different soil moisture conditions of
the three years, with less negative in May–July 2018 backscattered signals (i.e., wetter soil
conditions) compared to those of May–July 2016 and 2017 (Figure 1b). Differences were also
captured by NDVI data, with a higher NDVI during the summer of 2018 than during other
summers; the NDVI reached low values (~0.2) only at the end of July 2018, when grass
finally died after a dry July typical of the Sardinian summer (Figure 1c). August 2018 was
unusually wet with high NDVI (>0.65) values again. The NDVI evolution also captured the
anticipated death of grass in the spring of 2017, when grass density started to decrease after
the dry March 2017 (Figure 1). However, the NDVI reached its lowest values (~0.2) only
at the beginning of June in 2017. In 2016, the NDVI started to decrease at the end of May
and reached its lowest values at the end of June, delayed in comparison to 2017 (Figure 1c).
Comparing σ0

vv and NDVI evolutions, the σ0
vv time series of the three years diverged largely

in June and July, when the NDVI was lower for all three years, and, therefore, the influence
of grass growth on the radar signal was low (Figure 1). Grass cover dynamics influenced
σ0

vv during the other months.
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Figure 2. Statistics of the seasonal (a) precipitation (P), and (b) potential evaporation (PE) at the Sardinian site in relation to
the 2003–2018 period (in each box, the red line indicates the median, the box and whiskers represent quartilies, and outliers
are depicted individually). The seasonal values of 2016, 2017, and 2018 years are indicated.

3.1. Soil Moisture Estimation from Radar

Using the simplest method, the revised change detection method (σ0
dry = −16 dB,

σ0
wet = −9 dB, θmin = 0.05, θs = 0.53), soil moisture was poorly estimated during the 2016

and 2017 dry seasons, with θ being higher (>0.14) than observed, especially in the summer
of 2016 (Figure 3), when the effect of grass was not removed. In the summer of 2017, the
estimated θ reached the lowest values only in mid-June, while the observed θ was already
~0.1 in May. The θ estimates were more reasonable in the spring and summer of 2018 when
soil moisture was mainly wet, even though θ estimates could not follow the steep shifts of
the observed θ (Figure 3). The effects of grass cover were not sufficiently removed from the
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radar signal using the WCM (fitted parameter values: A = 0.05 and B = 0.5) with the CD
method (Figure 3). In 2017, θ was estimated to be slightly better (rmse = 0.09, R2 = 0.53, and
p < 0.01, slope of the regression line = 0.63), while θ was poorly estimated for the other two
observed years (rmse = 0.09, R2 = 0.38, and p < 0.01, slope of the regression line = 0.46 in
2016; rmse = 0.12, R2 = 0.11, and p > 0.1, slope of the regression line = 0.20 in 2018, Table 1).
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Figure 3. At the grass field: (a) soil moisture estimates using the revised change detection method (CD) and the revised
change detection method after the WCM vegetation effect removal (CD,WCM), compared with the soil moisture ob-
served in the field (obs); (b) soil moisture using the CD,WCM method (θCD,WCM) versus soil moisture observed in the
field (θobs) (dotted lines are the linear regressions, with equations θCD,WCM = 0.5 θobs + 0.1, R2 = 0.69 p < 0.01 in 2016;
θCD,WCM = 1.42 θobs −0.005; R2 = 0.74, p < 0.01 in 2017; θCD,WCM = 0.2 θobs + 0.17, R2 = 0.31, p > 0.1 in 2018; the solid line is
the linear regression for the whole 2016–2018 period, with equation θCD,WCM = 0.2 θobs + 0.41, R2 = 0.12, p < 0.001).
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Table 1. Statistical index of method performance for soil moisture estimation from Sentinel 1 observations at the Sardinian
site [CD, change detection method; CD, WCM, change detection method using the water cloud model; DU WCM, DU
method using the Water Cloud Model; DU σD(NDVI), DU method using the proposed σD(NDVI) relationship; FU, σ = 1,
CL = 0.5, FU method using constant σ and CL; FU, σF(NDVI), CL = 0.5, FU method using constant CL and the proposed
σF(NDVI) relationship; FU, σF(NDVI), CL(NDVI), FU method using the proposed σF(NDVI) and CLF(NDVI) relationships;
rmse, root mean square error; Rµ, mean ratio; Rσ, standard deviation ratio; slope and intercept of the regression line
between soil moisture field observations and soil moisture estimates].

Statistical
Index Year CD CD, WCM DU WCM DU

sD(NDVI)
FU, s = 1,
CL = 0.5

FU,
sF (NDVI),

CL = 0.5

FU,
sF (NDVI),

CLF(NDVI)

rmse

2016 0.10 0.09 0.22 0.07 0.15 0.16 0.16

2017 0.10 0.09 0.24 0.04 0.12 0.18 0.08

2018 0.12 0.12 0.23 0.13 0.16 0.06 0.19

2016–2018 0.10 0.10 0.23 0.08 0.14 0.16 0.14

Rm

2016 0.94 1.11 0.53 0.96 2.06 1.43 2.14

2017 0.80 0.95 0.47 1.01 1.66 1.47 1.31

2018 0.90 1.06 0.54 1.24 1.94 0.92 1.87

2016–2018 0.88 1.04 0.51 1.03 1.88 1.34 1.70

Rs

2016 1.71 1.33 2.94 1.05 2.67 1.69 1.83

2017 1.34 1.15 2.25 0.97 2.05 1.86 1.30

2018 1.87 1.60 3.50 1.84 3.10 0.93 0.86

2016–2018 1.54 1.29 2.68 1.09 2.43 1.61 1.31

R2

2016 0.28 0.38 0.36 0.67 0.31 0.07 0.16

2017 0.57 0.53 0.45 0.93 0.55 0.01 0.80

2018 0.12 0.11 0.09 0.03 0.12 0.57 0.06

2016–2018 0.35 0.37 0.33 0.58 0.34 0.01 0.22

Slope

2016 0.31 0.46 0.20 0.78 0.21 −0.16 0.22

2017 0.56 0.63 0.30 0.99 0.36 −0.06 0.69

2018 0.19 0.20 0.08 0.10 0.11 0.82 −0.29

2016–2018 0.38 0.47 0.21 0.70 0.24 −0.06 0.36

Intercept

2016 0.17 0.10 0.38 0.06 0.06 0.19 0.05

2017 0.14 0.09 0.36 0.00 0.05 0.16 0.01

2018 0.21 0.17 0.41 0.16 0.09 0.05 0.19

2016–2018 0.17 0.11 0.38 0.06 0.06 0.17 0.05

The σ parameter must be set to estimate θ using the DU model. Since σ was not
measured in the field, σ was estimated for each satellite pass using θ measurements in
the field and the simultaneous radar σ0

vv, and inverting (3) (Figure 4a). In 2016 and 2017,
σ varied seasonally from minimum values of ≈0.5 cm in winter to high values of 2.5 cm
in spring, while its seasonal evolution was not well defined in 2018 due to the unusual
frequently wet conditions in late spring and summer (Figure 4a). We used the simultaneous
NDVI data to estimate σD(NDVI), considering the 2017 growing–dying period of grass only
(Figure 4b). In March, σ started out low with the highest NDVI (up to 0.7 cm), then increased
and reached the highest values (up to 2.5 cm) for NDVI ≈0.5, and then decreased with
decreasing NDVI due to the dry summer conditions (Figure 4b). A significant parabolic
curve (with concavity facing down) relating σ and the NDVI, σD(NDVI), was estimated
(σD = −11.96 NDVI2 + 11.44 NDVI − 0.5982, with R2 = 0.70 and p < 0.001). To estimate
θ, we used (3) with surface roughness given by σD(NDVI) during the March-September
period, and an equal 0.5 cm for the rest of the year. θ was well estimated for all the three
years although σD (NDVI) was estimated using 2017 data only (Figure 4c), confirming the
robustness of the approach (rmse = 0.07, R2 = 0.67, and p < 0.001, slope of the regression
line = 0.78 in 2016; rmse = 0.04, R2 = 0.93, and p < 0.001, slope of the regression line = 0.99
in 2017; rmse = 0.13, R2 = 0.03, and p > 0.1, slope of the regression line = 0.10 in 2018;
Table 1). We also tested the DU model using the WCM to account for the effects of grass
cover on radar backscattering, and a constant σ value of 2 cm for that soil type. Using this
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approach, the model performance was lower and θ was not well estimated during both
the dry and wet periods (Figure 4c) thus not capturing the seasonal dynamics (Table 1).
Similar poor results (not reported here for brevity) were obtained using other constant
σ values (=0.5 cm and 1 cm) in conjunction with the WCM in DU.
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Figure 4. The results using the DU method at the grass field for the 2016–2018 period of: (a) estimated roughness
length (σ) time series for the three years; (b) estimated σ versus corresponding NDVI, and fitted line of equation:
σD = −11.96 NDVI2 + 11.44 NDVI − 0.5982; (c) comparison of soil moisture observed at the Orroli field site (obs), and
soil moisture estimated using DU with the WCM (DU, WCM) (with σ = 2 cm), and soil moisture estimated using DU and
the proposed σD(NDVI) relationship (DU, σD(NDVI)).

The FU model needs the σ and CL parameters for θ predictions using (1) and (4). Using
simultaneous θ field measurements and radar backscatter observations of the two Sentinel 1
satellites, S1A and S1B, σ and CL were estimated for each satellite pass. Again, we only
considered 2017 data to look for σF(NDVI) and CLF(NDVI) relationships (Figure 5a,b). Al-
though the relationships of σ and CL with NDVI were not significant, we estimated the rela-
tionships of σF(NDVI) and CLF(NDVI) (σF = −10.83 NDVI3 + 5.58 NDVI2 + 1.88 NDVI + 0.87,
R2 = 0.14, p > 0.1, and CLF = 37.85 NDVI3 − 97.48 NDVI2 + 63.1 NDVI − 8.24, R2 = 0.11,
p > 0.1), and used the two relationships to make the two parameters variable with the
NDVI and estimate θ. During the spring and summer of 2017 that were very dry, θ was
well estimated but it was underpredicted in the fall of 2017 and in 2018, which were instead
wet (Figure 5 and Table 1). The θ estimates were even worse using the WCM to account
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for the effects of grass cover on radar backscattering, and constant values of σ (=1 cm) and
CL (=0.5 cm) in (4) (Figure 5 and Table 1).
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Figure 5. The results using the FU method at the grass field for the 2016–2018 period of: (a) estimated roughness length (σ)
versus corresponding NDVI, and fitted line of equation σF =−10.83 NDVI3 + 5.58 NDVI2 + 1.88 NDVI + 0.87; (b) estimated corre-
lation length (CL) versus corresponding NDVI, and fitted line of equation CLF = 37.85 NDVI3 − 97.48 NDVI2 + 63.1 NDVI− 8.24;
(c) comparison of soil moisture observed at the Orroli field site (obs) with soil moisture estimated from Sentinel 1 data
using FU and constant σ and CL values (FU, σ = 1, CL = 0.5), using FU and constant CL (= 0.5 cm) and the proposed
σF(NDVI) relationship (FU, σF(NDVI), CL = 0.5), and using FU and the proposed σF(NDVI) and CLF(NDVI) relationships
(FU, σF(NDVI), CLF(NDVI)).

Globally, the best performances in θ estimates were reached using the DU method
with the proposed σD(NDVI) relationship, which made the σ parameter variable over time
with grass cover, reaching the lowest rmse in 2016 and 2017 (Table 1), which were the years
with longer dry conditions. Considering the 2016–2017 period only, θ estimates from radar
(θR) using the DU method were significantly related with the θ measured at the field (θobs)
(Figure 6a; R2 = 0.80 and p < 0.001), and the slope of the fitted line between θR and θobs
was close to one (= 0.9, Figure 6a). Instead, using the FU method θR was still significantly
related with observed soil moisture (R2 = 0.41 and p < 0.001) but it was underestimated
especially under wet conditions (Figure 6a). Using FU, the differences between θR and
observed soil moisture (∆θR,O) were significantly negatively correlated with the observed
soil moisture itself (Figure 6b, R2 = 0.65 and p < 0.001). Using the CD method, θR was still
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significantly related with the observed soil moisture (Figure 6a; R2 = 0.51 and p < 0.001),
but soil moisture was overpredicted under dry conditions and underpredicted under wet
conditions. This behavior is well depicted by the fitted curved line between ∆θR,O and θobs
(Figure 6b), which highlighted a θR overprediction of ≈0.1 for drier θobs (~<0.2), and a θR
underprediction of the same amount for wet θobs (~>0.3; Figure 6b).
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Figure 6. At the grass field for the 2016–2017 period: (a) comparison of soil moisture estimates
from Sentinel 1 (θR) using the CD method with WCM (CD,WCM), the DU method with the pro-
posed σD(NDVI) relationship (DU, σD(NDVI)), and the FU method with the proposed σF(NDVI)
and CLF(NDVI) relationships (FU, σF(NDVI), CLF(NDVI)) with measured soil moisture at the
field (θobs) (regressions dashed lines are: θCD,WCM = 0.55 θobs + 0.09 with R2 = 0.45 and p < 0.01,
θDU = 0.90 θobs + 0.02 with R2 = 0.80 and p < 0.01, θFU = 0.45 θobs + 0.03 with R2= 0.41 and p < 0.001,
respectively); (b) differences between θR and θobs (∆θR,o) versus θobs (regression dashed lines are:
∆θCD,WCM,o = (−7.83 × 103 θobs

4 + 3.55 × 104 * θobs
3 − 2.52 × 104 * θobs

2 + 5385 θobs − 307.4)/
(θobs

2 + 2106 θobs + 194.4) with R2 = 0.65 and p < 0.001, ∆θDU,o = 0.10 θobs + 0.02 with R2 = 0.05 and
p = 0.06, ∆θFU,o = −0.55 θobs + 0.03 with R2 = 0.51 and p < 0.001).

We further tested the DU method at a site close-by (at 5 km), where field observa-
tions of soil moisture were available at a lower frequency, using the proposed σD(NDVI)
relationship estimated at the Orroli site (Figure 7). Also for this test site, θ was well esti-
mated (rmse = 0.04, R2 = 0.79, and p < 0.01, slope of the regression line = 0.73 in 2017; and
rmse = 0.36, R2 = 0.44, and p > 0.1 slope of the regression line = −1.43 in 2018), especially
during the spring of 2017 (rmse = 0.019, R2 = 0.94, and p < 0.01, slope of the regression
line = 0.93) (Figure 6).
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3.2. Soil Moisture Assimilation in a Land Surface Model

The land surface model had already been calibrated in Montaldo et al. [17] (model
parameters in Table 2), and was here further validated successfully for θ predictions during
the 2016–2018 period (rmse = 0.07; mean error = 0.05). We applied the proposed soil
moisture assimilation approach using Sentinel 1 data. The size of the ensemble (Ne) was
100 members [68], which was a sufficiently large number to ensure accurate estimates
with the EnKF, as demonstrated by the sensitivity analysis by Reichle et al. [66]. The
measurement error in ε was assumed to be zero mean with a standard deviation 0.1 that
corresponded to an error of about 5% in the θ observations. The ensembles of initial θl were
generated from a Gaussian distribution with a mean of 0.2, intentionally lower (20%) than
the observed value, and a standard deviation of 0.05, a higher value than those presented in
the literature (e.g., [63,85]). At each time step the ensemble of precipitation was generated
by multiplying the recorded precipitation value by a normally distributed random variable
with mean zero and a standard deviation equal to 20%. Model errors were achieved:
(1) generating an ensemble of kl

s with a lower k̂s value of 5 × 10−7 m/s than the calibrated
value of 5 × 10−6 m/s, and SDlogks of 0.98; (2) generating an ensemble of θl

lim with a higher
θ̂lim value of 0.25 than the calibrated value of 0.2, and SDθlim of 0.05; (3) generating an
ensemble of rl

s,min with a higher r̂s,min value of 200 s/m than the calibrated value of 100 s/m,
and SDrsmin of 20 s/m. The range of the ks values exceeded one order of magnitude. Note
that the errors of the initial model states and parameters were uncorrelated.

Since the best performance for radar-based θ estimates was reached using the DU
method with the proposed σD(NDVI) relationship, we assimilated those estimates in the
EnKF. The skill of the filter can be evaluated in Figure 8, where the mean (θ) and the 5th
and 95th percentiles of the θl ensemble predicted by EnKF are plotted with radar-based
soil moisture estimates. The spread of the EnKF ensemble decreased rapidly through time,
as shown by the reduction of the distance between the 5th and the 95th percentiles of
the ensemble of θl (Figure 8a). The EnKF guided θ towards observations from the radar
(Figure 8), correcting the EnOL especially in spring and early-summer, the key seasons for
water resources management (rmse of 0.08 using EnOL and rmse of 0.02 using EnKF when
θ was compared with radar-based observations). This is well depicted by Figure 8b, where
the rmse of θ with respect to radar-based soil moisture observations was computed every
ten days for a forward 90-day error calculation window (across Figure 8a), showing that
rmse using EnKF was lower than 0.05, mostly lower than 0.02 in 2016/17 fall-spring, and
always lower than the rmse using EnOL (up to 31%). To further test the EnKF a validation
2018–2020 period was also included (Figure 8), confirming the robustness of the approach
with rmse still lower than 0.03 using EnKF.
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Table 2. Land surface model parameters for the Orroli site.

Parameter Description
Value

Grass WV

rs,min [s m−1] Minimum stomatal resistance 100 280
Tmin [◦K] Minimum temperature 272.15 272.15
Topt [◦K] Optimal temperature 295.15 292.15
Tmax [◦K] Maximum temperature 313.15 318.15

θwp [–] Wilting point 0.08 0.05
θlim [–] Limiting soil moisture for vegetation 0.20 0.15

ω [HPa−1] Slope of the f 3 relation 0.01 0.01
zom,v [m] Vegetation momentum roughness length 0.05 0.5
zov,v [m] Vegetation water vapor roughness length zom/7.4 zom/2.5

zom,bs [m] Bare soil momentum roughness length 0.015
zov,bs [m] Bare soil water vapor roughness length zom/10

θs [–] Saturated soil moisture 0.53
b [–] Slope of the retention curve 8

ks [m/s] Saturated hydraulic conductivity 5 × 10−6

|ψs| [m] Air entry suction head 0.79
drz [m] Root zone depth 0.19
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Figure 8. Soil moisture assimilation results at the grass field site: (a) assimilated soil moisture observations from Sentinel 1
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4. Discussion

The unprecedentedly high spatial and time resolutions of Sentinel 1 radar data provide
the opportunity to develop operative soil moisture mapping also for small hydrologic
basins, such as the Mediterranean basins, which are typically characterized by a rugged
topography and a high spatial variability of physiographic properties (e.g., [15,16]. The
Sardinian site was characterized by interannual and seasonal climate variability, and the
recent analyzed three year-period was a good sample, alternating years with dry (2017),
wet (2018), and intermediate (2016) climate conditions. Soil moisture dynamics (Figure 1a)
were strictly related to rain variability in this Sardinian site since the soil layer did not
store large water contents due to its thinness, and soil moisture responded quickly to
atmospheric forcing and frequently varied [17], making the site a good test area for soil
moisture estimates from radar. Instead, grass variation was lagged to soil moisture as
typical of semi-arid ecosystems [5,30,88,89]. The NDVI decreased in spring when observed
soil moisture was very low, below a limiting soil moisture (≈0.20–0.25) for several weeks,
so that it actually decreased in May for the dry 2017 spring, in July for the wet 2018 spring,
and in June for the 2016 spring characterized by more usual climate conditions (Figure 1c).
Hence, grass biomass was shadowing the radar signal for most of the months; its influence
on radar needs to be considered in soil moisture estimation from Sentinel 1 because it can
affect the soil moisture estimates in the key seasons of water resources management in this
typical Mediterranean region, namely spring and summer [19].

4.1. Soil Moisture Estimation from Radar Satellite Observations

Soil moisture was not sufficiently well estimated from Sentinel 1 using the simple
revised change detection method. In the Sardinian grass field, the use of the revised
change detection method led to an overestimation of soil moisture under dry conditions
and an underestimation of soil moisture under wet conditions (Figure 6b), with potential
consequences on the predictions of main water balance terms, for instance, on infiltration
and evapotranspiration, which are key contributors to wet and dry seasons, respectively.
However, the use of the revised change detection method still allowed the seasonality of
soil moisture dynamics to be followed (rmse of 0.09 in the years 2016 and 2017), similar to
the results of Urban et al. [5] in an African savanna area. Considering its simplicity it can
be considered a reasonable and attractive method, which is applicable everywhere when
simultaneous Sentinel 1 and Sentinel 2 passes are available.

In our analysis, the widely used (e.g., [50,90,91]) Dubois et al. [27] approach with a
WCM for grass effect removal was not effective in soil moisture estimate. The availability of
long time series of Sentinel 1 data and field soil moisture observations allowed the surface
roughness seasonal dynamics to be analyzed, as well as the key role of this DU parameter.
The surface roughness, estimated using an inversion procedure of the DU model from
simultaneous field-observed soil moisture and Sentinel 1 data, generally varied seasonally
with high values (≈2.5 cm) in spring when the grass was highest and low values in winter
(Figure 4a). Capodici et al. [52] analyzed a short growing season (April–August 2006) in a
maize field, and surface roughness was linearly related to the NDVI, while we considered
a much longer database and detected a curved relationship between σ and the NDVI with
a maximum of surface roughness for values of NDVI around 0.5, and lower values for
both low (dry conditions) and high (wet conditions) NDVI values. Although the proposed
σD(NDVI) relationship was estimated for the 2017 spring-summer period only, when used
for the whole 2016–2018 period, the results were very encouraging, reaching the lowest
errors in soil moisture estimates (rmse of 0.04 and 0.07 in 2017 and 2016, respectively,
Figure 4). Note that the results were acceptable even for the highest values of NDVI (>0.7),
although the σD(NDVI) relationship was estimated for lower NDVI (0.1–0.7). With the
objective of simplifying the parameterization of the retrieval models the use of the proposed
σD(NDVI) allowed to integrate vegetation effects in the roughness parameter, as previously
suggested by Capodici et al. [52]. Note that, recently, Hamze et al. [92] estimated soil
roughness from L-band images, improving significantly soil moisture mapping derived
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using C-band SAR data. In addition, El Hajj et al. [93] demonstrated that the use of L-band
images can be attractive for high NDVI (>0.7) in several crops, overcoming the limitations
of C-band. Nowadays, L-band images are not available with high revisit time, in contrast
with the C-band images of Sentinel 1, and, therefore, are not appropriate for operational
soil moisture mapping [92]. In the next future, L-band images should be available at
higher revisit time with the new SAR missions (e.g., NISAR (NASA-ISRO SAR), and
Tandem-L; [92]), becoming attractive for operational approaches.

The proposed approach provided an optimal solution between the several tested
methods for soil moisture retrieval, since the DU model needed only one parameter, the
surface roughness, avoiding the overparameterization (two parameters) of the FU method
and the oversimplification of the revised change detection method. The use of more
physical approaches, such as the FU method, could provide the optimal solution when
site specific information are available and the model can be calibrated [50,94] However,
in the Sardinian grass field site, the use of this approach didn’t improve soil moisture
estimates, even when roughness and CL were estimated as varying over time using the
proposed σF(NDVI) and CLF(NDVI) relationships, with results being even worse than with
the change detection method for the wettest soil conditions (Figure 6b).

Encouragingly, the proposed DU method was successfully tested in another grass field
5 km away from the Orroli field site, although the σD(NDVI) relationship was estimated at
the Orroli site. Hence, due to the low computational burden and the improvements in soil
moisture estimation, the DU approach with the proposed σD(NDVI) relationship can be
recommended for operational soil moisture mapping from Sentinel 1 data.

4.2. Soil Moisture Assimilation in a Land Surface Model

The assimilation of periodic surface soil moisture observations, such as the one pro-
vided by remote sensing platforms, allows the guiding of land surface model (LSM) pre-
dictions. We demonstrated the possibility of merging observations and a model optimally
for providing robust predictions of soil moisture. Previous attempts have demonstrated
the potential of merging the observations of remote sensor scanning microwave bands
with LSM to successfully predict soil moisture (e.g., [20,95,96]). However, these attempts
were developed for large spatial scales (≈30–50 km), appropriate for areas with low spatial
variability of physiographic properties and climate conditions. Instead, we have demon-
strated that using the new Sentinel 1 and Sentinel 2 remote sensors, soil moisture can be
estimated successfully at high spatial resolutions (=30 m) and time scales (≈6 days), which
is appropriate for the typical heterogeneity of Mediterranean ecosystems. We used the
radar-based soil moisture estimates for an operative assimilation system, updating the
approach developed by Montaldo et al. [68], which were constrained to use observations
from frequency domain reflectometer (FDR) probes installed in the field as a proxy for
remote sensing observations of soil moisture, since observations of remote sensors at high
temporal and spatial resolutions were not available at that time.

The proposed EnKF-based assimilation approach allowed the Sentinel 1 observations
to be assimilated successfully in the Montaldo et al. [68] LSM for a very long period (almost
five years), overcoming the errors in observations and models, including the induced errors
in saturated hydraulic conductivity and limiting soil moisture of grass growth, two key
LSM parameters [81,97,98]. When the assimilation approach was not operating errors in
the saturated hydraulic conductivity and limiting soil moisture, the soil moisture was badly
predicted. The proposed EnKF based approach removed these errors after the first months
of EnKF.

5. Conclusions

The availability of simultaneous Sentinel 1 radar and Sentinel 2 optical data allows soil
moisture to be mapped at high temporal and spatial scales, appropriate for ecosystems and
hydrologic basins characterized by a rugged topography and a high spatial variability of
physiographic properties. The comparison of three widely used methods for soil moisture
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retrieval (change detection method, Dubois, and Fung) from the Sentinel 1 radar over a long
period from 2016–2018 in the Sardinia grass field highlighted the limitations of the current
methods when grass growth affects radar signal interpretation. Looking for operational
approaches for remote sensing soil moisture mapping, the most promising method was the
Dubois method when the proposed approach for estimating the key method parameter,
the surface roughness, from the NDVI was used. The proposed methodology was the most
attractive solution among the several tested methods for soil moisture retrieval since it
avoided model overparameterization (it needed only one parameter) still capturing soil
moisture dynamics well.

The proposed assimilation approach, which updated the Montaldo’s Ensemble Kalman
filter-based approach allowed the Sentinel 1 observations estimated using the proposed
Dubois-based method to be assimilated successfully, overcoming errors in observations and
models, and predicting well the soil moisture in the Sardinian grass field. This approach
should be useful in operational forecasting models, where system parameters would be
uncertain, and Sentinel 1 observations can guide soil moisture predictions.

Finally, we recognized that only two close sites with grass cover were investigated,
and thus further developments are needed to test the proposed approach, in particular the
proposed σD(NDVI) relationship, in more sites with different soil and climate conditions.
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